
.J\

.IoESIGN, MEASUREMENT, AND ANALYSIS OF PERFORMANCE
EXPERIMENTS ON SELECTED SORTING ALGORITHMS

Santiago M. AMarI
//

Abstract

Experimental designs have not been widely used in the study of
computing performance although they have been successfully applied
in biological and physical sciences experiments. This paper illustrates
the use of two experimental models adopted for comparison and pre
diction of the performance of some selected sorting algorithms. The
results showed the potential of designed experiments as valuable
tools in conducting computing performance evaluation.

1. Introduction

In general, the study of computing performance of algorithms is
done using mathematical analysis. When conducted in a broad class
of algorithms solving a particular problem, it is referred to as the
study of computational complexity. When it involves the study of
time and space requirements of a particular algorithm for a particular
implementation it is called analysis of algorithms. The purpose of the
analysis is to compare the effect of changes adopted with the end in
view of an optimum performance. When wider options for alternative
algorithms are available the analysis is used also to provide criteria
for selection.

1Associate Professor, Institute of Mathematical Sciences and Physics, University of the
Philippine at Los Banos; currently International Development Program Fellow, University
of Wollongong, New South Wales,Australia..

66

Statistical methods, on the other hand, when properly used can
be faster and more easily applied with less stringent skill requirement
on the part of the analyst. Once the methods are refined it can be
applicable to a wider class of algorithms which when implemented
may need very little or no modifications at all.

This study introduces an alternative means of conducting com
puter performance evaluation. In particular, the study present an
example of analysis of variance and regression analysis models. It
introduces basic ideas underlying the design, measurement, and ana
lysis of experiments in the context of computing science studies.

2. Design and Measurement

Before the application of an experimental design one must know
the assumptions underlying the analysis. For analysis of variance,
there are four assumptions which must be satisfied by the data so
that the result will be statistically valid. One condition is that the •
observations or the measures must be independent of one another or . I
in more technical terms, the adjacent runs must not be correlated. J
It also requires that the effect of the imposed condition of the ex-
periment called treatment must be additive rather than a propor-
tionate increase. Equally important is that the variability of measure-
ments from treatment to treatment must be the same. Lastly, the dis-
tribution of measurements must follow the normal probability dis-
tribution which means that the data balances evenly about its mean
and is well behaved. All of these assumptions are necessary for ana-
lysis of variance, and any violation will exact some loss in the cre-
dibility of the results of the analysis.

To verify whether the observations from the experiment meet
the assumptions, a preliminary experiment was conducted with a test
program involving the implementation of the selected sorting algo
rithms which are linear insertion sort, heapsort, and quicksort.

The results of the test are shown in Figure 1. This showed that
the means of execution time for the linear insertion sort and quick
sort are directly related with the variance or the spread of the values.
Also they are characteristically skewed or very much exponentially
distributed.

~.

67

14150-14154 4
14155·14159 88888888888899999
14160-14164 00000011111111112222222223333333
14165·14169 5555667777777888889
14170-14174 0222223344
14175-14179 57
14180-14184 0011144
14195-14199 78
14200-14204 013334
14205-14209 7
14210·14214 12
14215-14219 6

Linear Insertion Sort

1222-1223 23333
1224-1225 44444444444455555555
1226-1227 77777777777777777777777777777
1228-1229 999999999999999999999
1230-1231 0000000000001111
1232-1233 2222
1234-1235 4444
1236-1237 6

Heapsort

730-733 2
'734·737 4445566666666667777
738-741 888888888889999999999999900000000000000000000000
742·745 22222222222333334444444444
746-749 6667
750-753 01
754-757
758-761 0
762-765
766-769
770-773

Quicksort

Figure 1. Distribution of execution time (in hundredths of seconds) of linear
insertion sort, heapsort, and quicksort, Wirth's Implementation

,.
68

For the same set of data, analysis of autocorrelation was run and
the results showed no dependency among contiguous measurements,
Clearly, among the assumptions underlying analysis of variance this
is the only one satisfied. Also, it pointed out that to guarantee in
dependence of measurements all test runs must be made with the
machine dedicated. This also eliminated the "other users" effects.

When the variance is related to the mean, Anderson and Bancroft t
(1957) recommends a logarithmic transformation of all values prior
to analysis. The transformation is intended to accomplish three.
things: (i) to stabilize the variance, (ii) to render the effects additive,
and (iii) to approximate normality of the data.

3. Experimental Factors

A factor is an experimental variable which the analyst wants to t, I

evaluate at different levels (Winer (1971)). A treatment, on the other
hand, is a combination of the levelsof the factors chosen for the ex-
periment. Three factors were chosen for the experiment presented in
in this paper. The first factor is the sorting algorithm and the levels
are the three selected methods: linear insertion sort, heapsort,' and
quicksort. The uniqueness of their techniques and the manner by
which they behave with respect to some properties of the keys earn
their merits as favorite subject of analysis. The second factor of the
experiment is the size or the number of records to be sorted. The
levels chosen in the study are sizes 16, 64, 256, and 1024. The geo-
metric increase of the levels is to effect linear spacing when trans-
formed to logarithms to the base 2. Third factor is upsequence, a
measure of degree of the ordering of keys in sorting algorithms.

Most of the mathematical analyses of sorting algorithms consider
random, ordered (non-decreasing) and reverse-ordered keys as the
bases and show the fastest, average and the worst performances.
Practically, this suggests that a measure of the degree of order of the
keys is needed 'so that it can be used as another .factor of the experi-

69

ment. This will provide a more detailed and comprehensive picture
of the behaviour of the performance of the algorithm as affected by
this factor. A measure of degree of order of keys is the length of the
longest upsequence (U) which was defined by Gries. (1982), shown
in an example below. An upsequence is any subsequence of an array
with non-decreasing elements which are not necessarily contiguous
to one another.

Example of the length of longest upsequence (U).

Element
Upsequence Length

1 2 3 4 5 (U)

Original 2 1 4 5 3

A 2 4 5 3 (60%)

B 1 4 5 3 (60%)

Minimum Value 0(0%)

Maximum Value 5(100%)

In the example, A and B are two upsequences whose lengths are both
equal to 3. Hence, the longest upsequence is equal to 3.

The length of longest upsequence (U) has maximum value
bounded by S, the array size, which is also a factor of the experi
ment. When used jointly, the dependencies complicate the interpre
tation of the results since it would be difficult to isolate their
separate effects. In practice, whenever possible, this kind of depen
dency should be minimized and effort should be exerted to eliminate
or reduce it.

The approach taken for this study was to take the individual per
centages with respect to the maximum value. This allowed the mea
sures to assume values freely over the range 0 to 100 irrespective of

70

the value of S. Hence, for the example given above, U =60%. For the
experiment the levels of upsequence were maintained at 0, 25, 50,
75, and 100%.

4. Experimental Models

The factors of an experiment in general can be grouped into two
types: (i) qualitative or nominal and (ii) quantitative or measurable
type. The qualitative or nominal type are those factors with levels
that are non-quantifiable or can only be named. Algorithm, program
mer, and compiler are some of the examples. The quantitative or
the measurable types are those factors with levels arising from mea
surements. The examples are size and upsequence.

The type of factors in the experiment predetermines the model
and the associated analysis that can .be used. When at least one of the
factors is qualitative, then analysis of variance technique is used.
When quantitative factors are added to this experimental model the'
levels are considered discrete points, and their continuity property is
lost in the sense that no interpretation is possible for the interme
diate points between two levels. When all factors are purely quanti
tative then a regression model is used and the analytic methods are
linear regression and correlation analyses. There are other models
which can be used but discussion of them is beyond the scope of this
paper. The two models described above can be expressed more ex
plicitly as follows:

4.1. Analysis of Variance Model

~II

T[i,j,k,l]

=Mean

+ A[i]

+S[j]

+ A*S[i,j]

+U[k]

[the execution time for the ith algorithm, jth
size, kth upsequence and lth replication]

[the population mean]

[ith algorithm main effect]

[jth size main effect]

[the interaction effect for the ith algorithm and
the jth size]
[the kth upsequence main effect]

+ A*U[i, k]

+ S*U[j, k]

+ A*S*U[i,j,k]

+ E[i, j, k, 1]

71

[the interaction effect between the ith algo
rithm and the kth upsequence]

[the interaction effect for the jth size and the
kth upsequence]

[the interaction effect for the ith algorithm,
jth size, and kth upsequence]

[the random error effect for each of the test
runs]

In this model, we assume fixed effects except for the random
error component. This means that these effects are constant para
meters and do not have any probability distribution. The error com
ponents, however, are assumed to be a random sample from a normal
population. The assumptions fit the experimental conditions since
all the levels of the factors used are either selected or fixed at pre
determined points.

4.2. Quadratic Regression Model

T[i]

=Bo

+ Bs*S[i]

+ Bu*U[i]

+ Bss*S[i] *S[i]

+ Buu*U[i] *U[i]

+ Bsu*S[i] *U[i]

+ Eli]

[the execution time for the ith test run]

[the intercept]

[the linear effect of S]

[the linear effect of U]

[the quadratic effect of S]

[the quadratic effect of U]

[the interaction effect between Sand U]

[the random error effect]

This model is recommended when a comprehensive exploration
of the response to controlling variables is desired. This is almost al
ways accompanied by a graphical representation of the response
surface. In industry and agriculture the technique is used in optimiza
tion experiments. As a whole, this is referred to as Response Surface
Analysis (RSA) which was developed extensibly by Box and Hunter

72

(1957). The same set of assumptions holds for this model except that
the levels required are all quantitative. '

5. Methodology

The experiments were conducted using the facilities of the
Department of Computing Science, University .of Wollongong. The
test runs were made at the Computing Laboratory of the Department
which is equipped with two. Perkin Elmer (PE 3230) computers
running under the UNIX operating system. As a result of the preli
minary experiment the test runs were made in a dedicated machine.
All statistical analyses were done using a customized package
developed specifically for the experiments. The programs for the
implementation of the three sorting algorithms given in Wirth (1976)
were developed.

The final. experiment was implemented by first generating the
data for each of the array sizes 16, 64, 256, and 1024 records at the
upsequence levels 0%, 25%, 50%, 75% and 100%. All the treatment
combinations of factors algorithm (A), size (S), and upsequence (U)
were then executed three times in random order. The results of the
test runs are presented in Tables 1, 2, and 3. Note that in these
tables, size (S) has been converted to base 2 logarithm while up
sequence (U) is in percent.

An analysis of variance was run for the three factors using the
specified model above. Prior to running the analysis, the data were
first transformed into base 2 logarithms for reasons explained in sec
tion 2. Regression and correlation analyses were applied on the same
set of data for the quadratic model. To get more stable values of re
gression coefficients the means of the three replications of trans
formed data were used.

6. Results

The results of the analysis of variance of the combined data of
Tables 1, 2, and 3 are shown in Tables 4 and 5. In the analysis the last
level of factor size was eliminated due to a problem on stack over
flow for the linear insertion sort implementation.

73

Table 1. Execution time for linear insertion sort (in hundredths of seconds)
by size and upsequence, Wirth's Implementation.

Size Upsequence Replication
(S) (U)

1 2 3

00 26 25 23
25 23 23 23

4 50 23 23 21
75 20 18 20

100 19 19 21

00 173 169 172
25 125 125 125

6 50 113 111 113
75 88 85 85

100 60 63 63

00 2011 2010 2006
25 1137 1142 1137

8 50 1007 982 973
75 690 690 681

100 240 243 240

00 7543 7539 7506
25 3732 3729 3734

9 50 3412 3340 3317
75 2281 2292 2274

100 475 485 471

74

Table 2. Execution time for heapsort algorithm (in hundreths of seconds) by
size and upsequence, Wirth's Implementation.

Size Upsequence 'Replication
(S) (U)

1 2 3

00 26 24 24
25 24 26 26

4 50 25 25 25
75 25 24 26

100 28 25 26

00 99 93 94
25 99 96 98

6 50 99 96 98
75 102 98 99

100 102 103 99

00 415 419 417
25 432 432 440

8 50 439 432 435
75 440 440 438

100 426 415 418

00 1901 1859 1862
25 1942 1933 1934

10 50 1989 1947 1947
75 1968 1954 1947

100 2031 1995 1979

75

Table 3. Execution time for quicksort algorithm (in hundredths of seconds),
by size and upsequence, Wirth's Implementation.

Size Upsequence Replication
(S) (U)

1 2 3
-- "--._-

00 18 18 20
25 21 21 21

4 50 20 23 21
75 19 23 19

100 19 19 19

00 71 70 73
25 81 I 83 85

6 50 83 85 81
75 76 81 81

100 71 71 71

00 290 285 284
25 343 339 342

8 50 338 336 336
75 336 332 332

100 275 281 278

00 1186 1185 1177
25 1440 1442 1434

10 50 1484 1489 1510
75 1411 1411 1415

100 1137 1142 1142

76

Table 4. Mean of execution time for the interaction of algorithm, upsequence
and size.I '

S i z e (U)
Algorithm Upsequence within (1)

(A) (U) 4 6 8 (A)

0 4.62 7.42 10.97 7.67
Linear 25 4.52 6.96 10.15 7.21
Insertion 50 4.48 6.81 9.95 7.08
Sort 75 4.27 6.43 9.42 6.71

100 4.30 5.95 7.91 6.05

(S) within (A) 4.44 6.72 9.68 6.94

0 4.62 6.57 8.70 6.63
25 4.66 6.61 8.76 6.68

Heapsort 50 4.64 6.64 8.76 6.68
75 4.64 6.64 8.78 6.69

100 4.72 6.66 8.71 6.70

(S) within (A) 4.66 6.62 8.74 6.67

0 4.22 6.16 8.16 6.18
25 4.39 6.37 8.42 6.39

Quicksort 50 4.41 6.37 8.40 6.39
75 4.34 6.31 8.38 6.34

100 4.25 6.15 8.12 6.17

(S) within (A) 4.32 6.27 8.29 6.30

(S) 4.47 6.54 8.90 6.64

1Execution time and size were transformed to base 2 lo&arithm.

. In Table 4, the means of the algorithms showed quicksort as having
the best time of 6.30 followed by heapsort with 6.67. The
poorest was linear insertion sort with 6.94. Since the three-factor
interaction is significant, it is necessary to account for the size and
upsequence levels in order to compare the three algorithms. A case
in point is the comparison of linear insertion sort at upsequence
100% and for sizes 4, 6, and 8 with heapsort and quicksort. Clearly,
the earlier mean comparison is contradicted since linear insertion sort

77

showed better timing or it was within random error limit of what
heapsort and quicksort did. Also, it is clear. from Table 4 the overall
superiority of quicksort over heapsort and linear insertion sort except
in the case of ordered or nearly ordered keys where the latter per
formed equally or better.

Table 5. The analysis of variance for execution time.l

SV DF SS MS F

Algorithm (A) 2 9.5609 4.7805 1986.15··
Size (S) 2 443.0603 221.5302 92037.63"
AxS 4 7.9810 1.9953 828.96"
Upsequence (U) 4 4.6049 1.1512 478.29"
AxU 8 9.0899 1.1362 472.07··
SxU 8 2.4051 0.3006 124.90"
AxSxU 16 3.8579 0.2411 100.18
Err 0 r 90 0.2166 0.0024

TOTAL 134 480.7768 (CV= 0.74%)

1Execution time and size were transformed to base 2 logarithm.
••Levelof significance less than 1%.

An easy way of interpreting interaction results is to use Figure 2.
It is interesting to note in this graph how fast the performance of
linear insertion sort is degraded as size is increased and upsequence
decreased. On the other hand, the heapsort curve is almost a straight

.~ line parallel to upsequence axis indicating the small effect of upse
quence. Regarding quicksort, Wirth's implementation considers the
middle key as the partitioning point which favors good performance
for nearly or completely ordered keys in either sense of ordering.
In this kind of study, using analysis of variance alone may not pro
vide all the information that the analyst may want. For instance,
even if the factors size and upsequence are quantitative, since their
levels are regarded as discrete points, drawing inferences on inter
mediate points is not possible. Therefore, another method can be
considered for that purpose. This time the interest is to find out if the

78

SIZE

o -Linear Sort

<> -Heapsort

.0 - Quicksort

--4

6
8

........Q

,
0..-._.-0

'

Time
Log (sec)

11.0(1\ ..8" .,
.6 I "

"
.4 I
.2 I

10.0 I
.8 I
.6 I
.4 !
.2 ,

9.0 i .' . \

::<:>-._.-.- <>-0- ._._'-<>--0.-.-'~."'"':.-<>
.4! -- .-.-. -.-. _.-0.... - '''8.irn... ·.... ."".

8.0"
.il i
.6...,l..
.4U)... ..
.2 I,

7.0 ! "0- .
- I ---:8
.8, -<> ~ o.6<f>---- ---- -~::: ----
.4 , _ --0-----0----2m- - -- ~...-.-o

6.0'1"' U
.8 I
.6 i
.4 I
.2 I

':~.4 .

.2

100

++ .4.0 + + . ._ . +

o 25 50 75
Ups e que n c e (%)

Figure 2. Execution time of linear insertion sort, heapsort, and quicksort
as affected by size and upsequence.

•• 79

performance of each of the algorithm can be expressed as a function
of upsequence and size by fitting a regression model.

The quadratic regression model fitted to the data of Table I
showed that the performance of linear insertion sort is highly'depen
dent upon the degree of order of the keys or upsequence aside from
the array size. As shown in Table 6, it is worth noting that the re
gression terms of the model contribute significantly to the predic
tion. This is shown in Figure 3.

Table 6. Response surface analysis of execution time on size and upsequence
of linearinsertion sort algorithm, Wirth's Implementation.

SV DF SS MS F

Regression 5 154.175 30.835 313.09"
Error 14 1.379 0.098

TOTAL 19 155.554

R-square = 0.9911

Test for Ho: Beta= O.

Regression Regression t-computed
Term Coefficient

Intercept 0.325198
Size (S) 0.720113 2.022835*
Upsequence (D) 0.035813 3.624452"
SxS 0.074574 2.760132*
UxU -0.000137 -2.035272*
Sx U -0.006~30 -6.027755"

• Level of significance less than ten percent
"'Level of significance less than one percent

~,

80

UPSEQUENCE
(percent)

E
12 0 20 40 60 80 100

TIME

(Sec)

100 ".
75

50

25

0

Figure 3. Response surface of execution time of linear insertion sort on size
and upsequence

The run for heapsort revealed an entirely different behaviour
from that of the linear insertion sort. Again, the analysis in Table- 7
showed that heapsort performance is not significantly affected by
upsequence nor the degree of order of the keys. The test of signi
ficance of the regression coefficients showed that only the size, both
linear and quadratic terms, contribute to prediction. Seealso Figure 4.

Quicksort differs markedly from linear insertion sort in the sense
that it is generally faster and behaves differently with respect to up
sequence. It also enjoys appreciable margin over that of heapsort
in performance, practically at all points. Also, using Wirth's imple
mentation, it performed favorably on cases of ordered or nearly
ordered keys unlike heapsort. This is seen from the regression coeffi
cients in Table 8. Note that both predictors have significant linear
and quadratic terms. The significance of the quadratic terms is a
manifestation of better performance when the keys are ordered or
nearly ordered. This, however, should be considered specifically true
only for .wirth's implementation or for his partitioning strategy.
(Figure 5).

•,
81

Table 7. Response surface analysis of execution time on size and upsequence
for heapsort algorithm, Wirth's Implementation.

SV DF SS MS F

~
Regression 5 109.583 21.9174 25747.32**
Error 14 0.012 .0.0008

TOTAL 19 109.595

R-square = 0.9999

Test for Ho: Beta = O.

Regression Regression t-computed
Term Coefficient

Intercept 0.972952
Size (S) 0.855111 36.56**
Upsequence (U) 0.001262 1.45
SxS 0.013715 8.41**
UxU -0.000006 -0.90
Sx U -0.000013 -0.15

*'" Level of significance less than one percent.

~

82

UPSEQUENCE
(percent)

TIME
(sec)

o
!...... ,

E
12 0 20 40 60 ,80 100

Figure 4. Response surface of executiontime of heapsorton sizeand
upsequence

7. Summary and Conclusion.

All the results of performance evaluation for the three selected
algorithms, linear insertion sort, heapsort, and quicksort agree with
the results of mathematical analyses. This shows that statistical
methods can be used to strengthen the outcome of the analyses using
the other methods or can be relied upon in the absence of any other
means of comparison. Note that the coefficient of determihation for
all the regression analyses gavevalues higher than 0.99 and significant
model F-tests at level of significance less than one percent.

For other computing algorithms, the area of concern is to fit in
the right statistical tool or develop the tool together with the devel
opment of measurement strategies. The latter is as relevant as the
development of tools since the field has not yet been fully explored
and studied. As envisioned, this may range from the generation of
simple synthetic data as illustrated in this study to scriptwriting of
operation scenarios for the experiment.

83

Table 8. Response surface analysis of executive time of quicksort algorithm
on size.and upsequence, Wirth's implementation.

SV DF SS MS F

Regression 5 101.997 20.3994 10329.21**
Error 14 0.028 0.0020

TOTAL 19 102.024

R.square =0.9997

Test for Ho: Beta =O.

• Regression Regression t-computed
Term Coefficient

Intercept 0.457761
Size (s) 0.901041 25.29**
Upsequence (U) 0.011109 8.38**
SxS 0.007995 3.22"""
UxU -0.000108 -11.38"""
Sx U -0.000088 -0.70

**Level of significance less than one percent

84

UPSEQUENCE
(percent)

10080604020o12
E

z
10

.......
I (1082)

S 8
.,/

..... /
~....0.·

6 ...»: y~/
f-Tf" -; 1/ /. /1 J (l I T -TT-'--

-: L>' 11// l/ I I ! ! !7 I II 1/ / [L)4 ./ ~/ 1..-/ il/ It1// /i1// /jIII 7 iN
.:» •• -'" / V '~

r ... 1..-/ vI [,7/ 1./1 /,! 11/ , // '/ '/ /
(

1---" .-' J , 1// J l ,/ //,
/~ ~.

./ i/ "v~ V
.....'" / 1//

r;/ , " / ./ 1/ 7· / , f7
»: " ..- .- " " 'r ." . r: "-'" .,........ o' r

- .' .." ... ~ ~..,.... , ~ ~ /

.> ~- e- , ... , .' ,

"
~ .', ..- ~ - " "

, , , , ,
... ~ ~

~/
~

25

o

50

TIME

(Sec)

100

75

Figure 5. Response surface of execution time of quicksort on size and
upsequence

Only two methods were illustrated in this study but it should be
understood that there are other statistical methods which may be as
powerful or even more powerful whose potentials have yet to be
tapped.

8. Acknowledgement

The author is indebted to Professor J. Reinfelds and Dr. N. B.
Gray for their invaluable advice and assistance. He wishes to thank
Dr. H.P. Artis for his personal concern, Ms. S. Linde for her critical
reading and editing of the manuscript, and Ms. L. Maxwell for the
preparation of the final paper.

85

REFERENCES
Anderson, R. L. and Bancroft, r, A. (1957). Statistical Theory in Research.

McGraw-Hill BookCo., Inc. New York.

Box, G. E. P. and Hunter, J. S. (1971). Multi-factor experimental designs for ex
ploring response surfaces. Annals ofMathematical Statistics. 28,195·241.

Gries, D. (1980). The Science of Programming. Springer-Verlag, New York,
Heidelberg and Berlin.

Winer, B. J. (1971). Statistical Principles in Experimental Design. McGraw-Hill,
New York.

Wirth, N. (1976). Algorithms + Data Structures = Programs. Prentice-Hall, Inc.,
New Jersey.

85

REFERENCES
Anderson, R. L. and Bancroft, r, A. (1957). Statistical Theory in Research.

McGraw-Hill BookCo., Inc. New York.

Box, G. E. P. and Hunter, J. S. (1971). Multi-factor experimental designs for ex
ploring response surfaces. Annals ofMathematical Statistics. 28, 195-241.

Gries, D. (1980). The Science of Programming. Springer-Verlag, New York,
Heidelberg and Berlin.

Winer, B. J. (1971). Statistical Principles in Experimental Design. McGraw-Hill,
New York.

Wirth, N. (1976). Algorithms +Data Structures = Programs. Prentice-Hall, Inc.,
NewJersey.

